
Veri�cation and Validation of High Integrity Software

Generated by Automatic Code Generators�

Venkata Malepati, Hong Li, Krishna Pattipati

University of Connecticut, U-157, Dept. E.S.E.

Storrs, CT 06269-3157

phone/Fax: (860)486-2890/5585

Email: krishna@sol.uconn.edu

Ann Patterson-Hine

MS 269-4, NASA-Ames Research Center

Mo�ett Field, CA 94035-1000

Phone/Fax: (650)604-4178/4036

Email: apatterson-hine@mail.arc.nasa.gov

Abstract

In this paper, we present a comprehensive methodol-
ogy for validating automatically generated software.
The process consists of developing a fault-e�ect de-
pendency model for the software, design of input stim-
uli to make the bugs manifest, design of tests to detect
the incompatibilities from the intended behavior, and
identifying the faulty code segment. A key feature of
the methodology is the application of functional de-
pendency modeling concepts, that are proven to be
robust in the testability analysis and fault diagnosis
of large complex hardware systems, to software veri-
�cation and validation.

1 Introduction

The rapid advances in information technology have
made software an indispensable element of daily life.
The pervasiveness and increased complexity of soft-
ware systems require that the software be produced
e�ciently and that its integrity and security be of
the highest quality. Increasingly many systems and
controllers are being implemented with the code gen-
erated by automatic code generators, such as MA-
TRIXx SystemBuild [11] from Integrated Systems
Inc. and SIMULINK [10] Real Time Workshop from
the Mathworks, Inc. Before applying such auto-
generated software con�dently to safety-critical ap-
plications, techniques must be developed for assuring
that the code is reliable.
Automatically generated software is cumbersome to

debug manually. This is because it typically has more
lines of code per module (unit), and smaller number of
modules than manually generated code. In addition,
all internal variables are not available for monitoring.
This can mask many potential bugs from appearing at

�Research is supported by NASA - Ames Research Center
under NASA-university consortium grant NCC2-5245

the system outputs. The McCabe's Cyclomatic com-
plexity of individual modules [4], a measure of the
complexity of a module's decision structure, is typi-
cally large. Consequently, it is di�cult to manually
test auto-generated code even at the unit-level.
In this paper, we develop a model-based approach

to validate the AutoCode generated by SystemBuild
design environment, and a software tool implementing
the software validation process. The software tool
provides the following facilities:

1. Assessing software integrity via o�-line testing,
as well as real-time monitoring and troubleshoot-
ing; and

2. Evaluating software dependability and security
via fault injection.

Our method consists of:

� Instrumenting the software so that bugs are de-
tectable;

� Design of input stimuli via robust design tech-
niques [5] so that bugs are \tickled";

� Design of tests so that wrong results are recog-
nized (\error signatures");

� Real-time monitoring and troubleshooting of
software via fast diagnostic inference algorithms
to isolate faults quickly and accurately; and

� Assessing software integrity via fault injection.

Traditional software testing can be divided into
two categories: static testing and dynamic testing
[3]. Static testing involves requirement inspection
and speci�cation (model) testing, while dynamic (i.e.,
execution-based) testing includes black-box and glass-
box approaches. Our process (shown in Figure 1)
blends these two testing approaches. Consequently, it

1

Figure 1: Overview of Monitoring and Validation of
AutoCode

can be used for speci�cation testing, software valida-
tion and troubleshooting. In the speci�cation testing
phase, our approach provides a priori predictions of
detection and isolation measures and suggests suit-
able locations for test points (debug points). In the
software validation and troubleshooting phase, faults
are detected and isolated only with system-level input
speci�cations.
In our process, the user provides a system model

and input speci�cations for the software. Our soft-
ware automatically extracts a dependency model of
the system, where the modules are the functional
blocks in the modeling environment (e.g., MATRIXx,
SIMULINK). The I/O dependency model of each
functional block is extracted via simulation. The de-
pendency model of software can be used to design test
points (i.e., variables to be monitored) for fault detec-
tion and isolation1. The inputs for system level test-
ing are generated via robust design techniques based
on system level input speci�cations (e.g., ranges of in-
puts). The ranges for input at unit-level are obtained
via Monte-Carlo runs at system-level. The AutoCode
results are compared against software model or its
speci�cations (fault-free code in the case of software
integrity assessment) to extract error signatures. The
dependency of the software and the error signatures
are used by the real-time inference engine2 to asser-
tain the status of functional blocks in software and to
evaluate the integrity of software.
The paper is organized as follows. In Section 2,

we discuss software instrumentation via TEAMS. In
Section 3, we address the design of input stimuli to
manifest bugs. In Section 4, we discuss the process

1TEAMS, Testability Engineering And Maintenance Sys-
tem, an X-windows based testability engineering tool that gen-
erates testability �gures of merits (TFOMS) from the fault-
e�ect dependency models of systems, is used to design test
points [2].

2
TEAMS-RT , Testability Engineering And Maintenance

System-Real Time, is used for real-time monitoring and fault
isolation of the system using pass/fail test results [2].

of fault detection and error signature generation. In
Section 5, we present a software monitoring and fault
isolation process via TEAMS-RT. In Section 6, we
demonstrate the application of the validation process
to the Early External Active Thermal Control System
(EEATCS) system. This is followed by Section 7 with
a summary and suggested future enhancements.

2 Software Instrumentation

via TEAMS

The goal of this step is to instrument the software
so that bugs are detectable. The automatically gen-
erated software has limited assertions and self-checks
that are not adequate for e�ective fault isolation. In
order to instrument the software so that bugs are vis-
ible, it is necessary to extract a multisignal depen-
dency model [1] of the software. Based on the mul-
tisignal model, the TEAMS software will identify the
optimal set of \test points", i.e., positions in the code
where additional tests and assertions need to be in-
serted (e.g., sanity checks on probabilities). This step
is accomplished by automatically extracting a cause-
e�ect dependency model from the function call hier-
archy or from the design environment - such as CASE
tools or via fault injection and simulation.
For the systems designed using MATRIXx, we ex-

tract a functional hierarchy, which de�nes potential
dependencies, through System Build Accesses (SBA)
- a querying tool to get the hierarchy, connectivity of
the blocks, etc., in the system. The nature of de-
pendency is extracted from the simulation of each
functional block by injecting faults. All the available
output variables of each functional block is a test in
TEAMS. Another unique feature of TEAMS is that
it can classify tests by run-levels (akin to debug lev-
els used by developers) based on the computational
requirements, depth and accuracy of a test, and eval-
uate the testability of software for di�erent run-levels.
The latter involves answers to questions, such as what
percent of the software failures are detectable, where
does a software failure propagate, the minimum set of
variables to monitor for fault detection and isolation,
etc.
Figures 2 shows a prototype software model of a

subsystem of the space station, Early External Ac-
tive Thermal Control System (EEATCS) in the MA-
TRIXx design environment. The corresponding de-
pendency model in TEAMS is depicted in Figure 3.
The system has 13 inputs, 24 outputs, 19 superblocks
with 5 levels of hierarchy. The AutoCode generated
for this system has 1497 lines of code.

Figure 2: EEATCS System in SystemBuild

Figure 3: Dependency Model of EEATCS in TEAMS

3 Design of Input Stimuli to

Manifest Bugs

Based on the knowledge of the software speci�cation,
the input domain and possible levels of each input pa-
rameter are de�ned by well-known techniques, such as
input partitioning, equivalence cases, and boundary
value checking. For example, for each range (B1, B2)
of a parameter, �ve sampled levels can be selected,
corresponding to values less than B1, equal to B1,
greater than B1 but less than B2, equal to B2 and
greater than B2. Several design choices are provided
in our software tool to construct test cases | Or-

thogonal Arrays, One at a Time, and random testing.
In addition, users can de�ne their own test cases or
choose to apply all the test cases exhaustively.
One at a time test case generation uses a default

normal condition as the starting point. The test cases
are constructed by changing only one parameter at a

time, assuming there is no interaction among param-
eters.
Random test case generation may be unpredictable

for system-level testing. However Monte-Carlo simu-
lation runs can be used to extract input information
for unit-level blocks from the system-level input spec-
i�cations. Thus, Random test case generation can be
used as a prelude to unit-level testing.
Orthogonal Arrays is a fractional factorial design

technique with following properties [6, 7]:

� The input levels are vertically balanced, and

� For any column, all levels occur equally.

The designs span over the input domain due to these
properties. There are three resolution choices for Or-
thogonal Array generation: resolution III, IV and V.
The higher the resolution, the more interaction e�ects
are considered, typically requiring larger number of
test cases with higher fault coverage.
A geometric view of Orthogonal Arrays versus One

at a Time shows how Orthogonal Arrays provide bet-
ter fault coverage. Figure 4 shows the case of three
parameters and each parameter with three levels. If
the test domain is divided into 64 unit cubes and if
each test case can at most cover 8 unit cubes, the cov-
erage for Orthogonal Arrays is 17/64, while that for
One at a Time is only 10/64. In view of the superior
fault coverage property, Orthogonal Array method is
recommended.

Figure 4: Orthogonal Arrays Vs. One at a Time

For the EEATCS, the input pro�le and test stimuli
generated by way of Orthogonal Arrays with resolu-

tion III is illustrated in Figure 5. Here each input
is partitioned into two levels and 16 test cases are
constructed, while exhaustive testing would require

213 = 8192 test cases. Exhaustive testing is infeasible
due to combinatorial explosion. Consequently, test
stimuli are designed to satisfy the following two ob-
jectives: Maximizing the chances of detecting a fault,
while minimizing the number of test cases. With only
16 test cases from Orthogonal Arrays, faults are de-
tected and two blocks are isolated to be faulty by
system testing (see Section 4).

Figure 5: Input Stimuli for EEATCS

4 Fault Detection and Error

Signature Generation

Fault detection and error signature generation in-
volves the following steps:

� Apply stimuli and look for bugs (i.e., crash, hang,
produce inaccurate results)

This step is accomplished by employing input
stimuli identi�ed in Section 3 to functionally ex-
ercise the system, and by monitoring the Au-
toCode variables identi�ed in Section 2. We
added a special preprocessing step in AutoCode
to provide access to all the internal variables for
monitoring.

� Design tests to recognize wrong results (\error
signatures")

The AutoCode is compiled and simulated for a
user speci�ed simulation time horizon. Depend-
ing on di�erent user objectives, test results can
be obtained by comparing the AutoCode simu-
lation results with either output speci�cations or
the results of design environment, i.e., System-
Build simulator, or by comparing another version
of Auto/manual code as shown in Figure 6. This
assumes that the simulation results of design en-
vironment are validated prior to AutoCode vali-
dation.

� Generation of error signatures

The error signatures can be computed in one of
the following ways:

1. At each time step

eij(t) = f [yaij(t) � yeij(t)];
i = 1; 2:::NR; j = 1; 2:::NM ; 0� t � tf

where yaij(t) = actual value of the monitor-
ing variable j in ith run at time t

yeij(t) = expected value of the monitoring
variable j in i th run at time t

NR = number of runs (test cases)

NM = number of monitoring variables

tf = simulation time horizon

2. Aggregate over time for each run

eij = g[feij(t) : 0 � t � tfg];
where g is typically a combined threshold
function and a logical operator. For exam-
ple,

eij =

�
1 if eij > �ij for any t 2(0,tf)
0 otherwise

where �ij is a user speci�ed threshold.

3. Aggregate over time over all runs

ej = h[feij(t) : 0 � t � tf i = 1; 2:::NRg]
where h is typically a combined threshold
function and a logical operator

5 Software Monitoring and

Fault Isolation

The error signatures are mapped to pass/fail re-
sults of the test in the inference engine, TEASM-RT.
TEAMS-RT is a testability tool with real-time mon-
itoring capability and fast diagnostic inference algo-
rithms [9]. TEAMS-RT uses the same dependency

TABLE 1: TFOMS for EEATCS at debug level 2

Isolate 5 4 3 2 1
to Level

%FD 97.40 97.40 97.40 97.40 97.40

%FI 15.38 15.38 83.33 93.59 96.50

Ambiguity 7.98 5.15 1.27 1.03 1.01

Group Size

of FS 77 77 77 77 77

of TPs 22 22 18 16 10

Used

FS = Failure Sources, FD = Fault Detection,

FI = Fault Isolation, TP = Test Point,

TABLE 2: TFOMS for EEATCS at debug level 5

Isolate 5 4 3 2 1

to Level

%FD 100.0 100.0 100.0 100.0 100.0

%FI 41.03 43.59 97.44 97.44 100.0

Ambiguity 5.80 3.65 1.02 1.02 1.00

Group Size

#of FS 77 77 77 77 77

of TPs 37 36 25 18 12

Used

model that was extracted in section 2. Based on
pass/fail results of the tests, TEAMS-RT quickly de-
cides the overall health of the software i.e., faulty, sus-
pected, or known good code segment. The isolation
can be done to di�erent levels of hierarchy.
TEAMS-RT results can be used to focus the unit

testing to suspected blocks. We can further isolate the
faults to program statements via o�-line interactive
simulation of the suspected units in a debug mode.

6 Application of Testing Pro-

cess to EEATCS

Tables 1 and 2 show the Testability Figures Of Merit
(TFOMS) measures obtained at debug levels 2 and
5, respectively, for the EEATCS system. We can see
that the isolation is 100% upto isolation level 1. The
average ambiguity group size is nearly 1 for isolation
level upto 3. In addition, as shown in Table 2, one
needs to monitor only 12 variables to detect a fault.
On average, isolation can be done to one of �ve blocks
at the lowest level of isolation (isolation level 5).
Figure 7 shows the error signatures for EEATCS

triggered by the 16 test case orthogonal ar-

ray discussed in Section 3. Two faulty blocks,
Set S2 for Delay and FCV Command Limit, manifest
errors and are isolated. Faulty statements in blocks
are identi�ed via interactive simulation. For the block
Set S2 for Delay (Figure 8), when the last elseif is
executed, out dFlag is updated, but delayed S2 is not.
In this case, the design environment resets delayed S2

to zero, while the auto-generated code keeps its previ-
ous value. The Block FCV Command Limitmanifests
a similar problem.
Another three blocks, Moving Average T1,

PFCS Outlet Temp Seletionp, and Deadband Con-

troller did not manifest errors in those 16 test cases,
but they also have similar initialization problems.
These were identi�ed during unit-level testing.

Figure 6: Di�erent ways of Performing Veri�cation
and Validation

Figure 7: Error signatures for EEATCS

The discrepancy between the design environment
and AutoCode causes errors. The discrepancy can
be �xed via additional statements to initialize unup-
dated variables in the AutoCode or by making the
SystemBuild and AutoCode to match by the design
environment designer. The aw is identi�ed by the
real-time inference engine, TEAMS-RT, in our soft-
ware validation tool as shown in Fig 9. It would have

Figure 8: Faulty Block Set S2 for Delay

Figure 9: TEAMS-RT Output

been tedious and time-consuming to debug the entire
code manually.

7 Summary

In this paper, we developed a process for veri�cation
and validation of automatically generated software by
applying functional dependency modeling techniques.
We also discussed e�cient input stimuli generation,
design of test points and application of real-time mon-
itoring techniques to identify the faults quickly and
accurately.
Application of the process to EEATCS system, a

small subsystem of the space station, shows that au-
tomatic code generators need to be veri�ed and val-
idated. The process we developed for enhancing the
quality of AutoCode helps engineers to design and
evaluate software systems e�ciently.
We are currently working on enhancements to make

our methodology robust. The enhancements include
other test case generation methods, sophisticated
post-processing tests and error logging, application
to other automatic code generators, and applications
to general purpose software.

References

[1] Deb, S., Pattipati, K., Shakeri, and M., Shrestha,
M., \Multi-Signal Flow Graphs: A Novel Ap-

proach for System Testability Analysis and Fault

Diagnosis," in Proc. IEEE AUTOTESTCON,
Anaheim, CA, pp. 361-373, Sept. 1994.

[2] S. Deb et al \QSI's Integrated Diagnostic
Toolset," Proc. IEEE AUTOTESTCON, Ana-
heim, CA, 1997.

[3] Schach, S.R, \Testing: Principles and Practice,"
Chapter 110 in The Computer Science and En-

gineering Handbook, Allen B. Tucker (Ed.), CRC
Press, 1996.

[4] McCabe, T. J., \A Complexity Measure," IEEE

Trans. Software Eng., SE-2, pp. 308{320, 1976.

[5] Madhav S. Phadke, \Quality Engineering Using

Robust Design," Prentice Hall, Englewood Cli�s,
N.J., 1989.

[6] Madhav S. Phadke, \Planning E�cient Software
Tests," The Journal of Defense Software Engi-

neering, pp. 11{15, Oct. 1997.

[7] Thomas P. Turiel, \A Computer Program to De-
termine De�ning Contrasts and Factor Combina-
tions for Two-Level Fractional Factorial Designs
of Resolution III, IV, and V," The Journal of

Quality Technology, pp. 267{271, Oct. 1988.

[8] Shakeri, M., Pattipati, K., Raghavan, V.,
Patterson-Hine, A., and Kell, T., \Sequential Test
Strategies for Multiple Fault Isolation," in Proc.

IEEE AUTOTESTCON, Atlanta, GA, Aug. 1995.

[9] Somnath Deb, Amit Mathur, Peter K. Willet,
Krishna R. Pattipati., \De-centralized Real-time
Monitoring and Diagnosis," in Proc. IEEE Con-

ference on System Man Cybernetics, La Jolla, CA,
Oct. 1998.

[10] Simulink: Dynamic System Simulation Software,

Release Notes, version 1.3, The Mathworks, Inc.,
1994, 1995.

[11] System Build User's Guide for Version 5.0, In-
tegrated Systems, Inc., 1994, 1995.

	Abstract
	1 Introduction
	2 Software Instrumentation via TEAMS
	3 Design of Input Stimuli to Manifest Bugs
	4 Fault Detection and Error Signature Generation
	5 Software Monitoring and Fault Isolation
	6 Application of Testing Proess to EEATCS
	7 Summary
	References

